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Summary 
We made substantial progress in two areas: (1) extending the expressiveness and ability to learn 
models of relational and temporal data; and (2) using those expressive representations to learn 
statistical models that express causal dependencies.  The approach to learning causal models — 
exploiting what statisticians call quasi-experimental designs — is particularly promising, though 
this was only a preliminary study.  Overall, the results indicate that substantial more work is 
warranted in automatic application of quasi-experimental designs.  The work reported here 
resolves several questions that would otherwise have indicated that the approach was unlikely to 
have worked well. 
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Introduction 
Recent advances in machine learning (ML) in complex data sets have revealed a surprising new 
opportunity to learn causal models of complex systems.  The opportunity is a deep and 
unexploited technical interaction between two previously unconnected areas: (1) work in 
statistical relational learning; and (2) work on quasi-experimental design in the social sciences. 
Specifically, the type of new data representations conceived and exploited recently by 
researchers in statistical relational learning (SRL) may provide all the information needed to 
automatically apply powerful statistical techniques from the social sciences known as quasi-
experimental design (QED). QEDs allow a researcher to exploit unique characteristics of sub-
populations of data to make strong inferences about cause-and-effect dependencies that would 
otherwise be undetectable. Such causal dependencies infer whether manipulating one variable 
will affect the value of another variable, and they make such inferences based on non-
experimental data. 

To date, QEDs have been painstakingly applied by social scientists in an entirely manual way. 
However, data representations from SRL that record relations (organizational, temporal, spatial, 
and others) could facilitate automatic application of QEDs. Constructing methods that 
automatically identify sub-populations of data that meet the requirements of specific QEDs 
would enable powerful and automatic causal inferences from non-experimental data. This fusion 
of work in SRL and QED would lead to: (1) large increases in the percentage of causal 
dependencies that can be accurately inferred from non-experimental data; (2) large reductions in 
the amount of data needed to discover causal dependencies that can already be inferred; and (3) 
large reductions in the computational complexity of causal learning algorithms. 

If exploited, this capability could provide a dramatic leap in the ability of intelligence analysts 
and others to automatically construct causal models of large and complicated systems (e.g., 
social systems, organizations, and computer systems). Such models would be a significant 
improvement over existing models learned by statistical and machine learning techniques, the 
vast majority of which are non-causal (and thus do not allow analysts to correctly infer the 
effects of potential actions) or only weakly causal (because many of the potential causal 
dependencies cannot be correctly inferred). 

The goal of this research was to investigate the potential of this interaction and make 
fundamental advances in the techniques to exploit it.  It should be noted that this is fundamental 
research that investigates new foundations for knowledge discovery algorithms rather than mere 
improvements to existing algorithms.  While we produced significant advances in the shortened 
period of this contract, continued support in the future could lead to dramatic improvements the 
basic technologies and to an applied system. 

Why Causal Models are Useful 
Nearly all algorithms for machine learning analyze data to identify statistical associations among 
variables. That is, they identify variables of some entity (e.g., a patient's occupation, recent 
physical contacts, and symptoms) that are statistically associated with other variables (e.g., a 
disease). Such associations are useful for making predictions about the values of unobserved 
variables based on the values of variables that can be observed. For example, a doctor could 
predict whether a patient has a particular disease (an unobserved variable) based on a set of 
observed symptoms. 
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Such associational models can be useful in many situations. For example, associational models 
constructed by machine learning algorithms now sit at the heart of most state-of-the-art systems 
for machine translation, speech understanding, computer vision, information extraction, and 
information retrieval. In all of these cases, associations among variables alone are sufficient to 
meet the goals of the deployed system. 

However, machine learning algorithms are often deployed in the hope that they will support 
decisions about which actions, or interventions, to make in a given situation. In the case of 
medical diagnosis, most medical professionals do not simply want to diagnose disease, but to 
prevent, treat, or mitigate the effects of the disease as well. They want to know what effect a 
particular intervention (e.g., implementation of a public health measure or widespread 
administration of a drug) will have on the health of a population. In such situations, practitioners 
want models that help them to design effective interventions, and this requires the modeling of 
causality, not merely statistical association. 

Remarkably, most existing probabilistic models are practically useless for designing effective 
interventions because they only identify statistical associations, not causal dependencies. As is 
emphasized in nearly all introductory statistics courses, correlation is not causation — statistical 
association between two variables does not necessarily imply that one causes the other. For 
example, suppose we gathered a sample of patients and measured a variety of variables about 
each patient, including their history of smoking and their incidence of lung cancer. 

If we analyzed the data, we would very likely find a statistical association between several of 
these variables. 

However, the association between any two variables A and B could result from any of three 
causal situations shown in Figure 1. If A and B are associated, then A could cause B (smoking 
causes lung cancer), B could cause A (a predisposition to nicotine addiction causes smoking), or 
a third variable C could cause both A and B (genetics could cause both a predisposition to 
nicotine addiction and a predisposition to lung cancer). 

 . 
Figure 1: Three causal models that produce statistical association. 

If a purely associational model is constructed from data and then used to support the design of 
interventions, either of the latter two cases could cause the resulting interventions to be 
ineffective (or even counterproductive). 

In contrast, if accurate causal models could be constructed, they would be useful to a wide range 
of users within the Intelligence Community.  
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Quasi-Experimental Design 
Fortunately, a class of methods does exist that can infer causal knowledge from observational 
data.  These methods are routinely used to support causal inferences in medicine, economics, and 
social science. They can be grouped under the rubric “quasi-experimental design” (QED), and 
they attempt to exploit inherent characteristics of observational data sets that partially emulate 
the control and randomization possible in an experimental setting (Campbell, Stanley & Gage 
1963; Cook & Campbell 1979; Shadish, Cook & Campbell 2002). 

Although QEDs clearly do not always have the internal validity of traditional experimental 
designs, but they can be applied to the much wider array of data sets that modern data collection 
practices have made available, and the size and scope of those data sets can partially or 
completely compensate for the deficiencies that arise from lack of experimental control. Indeed, 
there are a wide variety of situations where causality can be explored in no other way. 

In the absence of explicit control and randomization, some QEDs employ case matching to 
identify pairs of data instances that are as similar as possible in all respects except for the 
variable under investigation (the non-equivalent group design). Other QEDs examine how the 
value of a given variable on the same data instances changes over time, typically before and after 
some specific event (the regression-discontinuity design). Other types of quasi-experimental 
designs that have been devised include the proxy pretest design, double pretest design, 
nonequivalent dependent variables design, pattern matching design, and the regression point 
displacement design. 

A particularly salient example of quasi-experimental design is a classical twin study, a design 
that has been employed for decades to study the causal factors for particular diseases and 
conditions. Twin studies compare the incidence of disease in sets of monozygotic (identical) and 
dizygotic (fraternal) twins. Monozygotic twins share identical genetics, a common fetal 
environment, and (typically) a common post-natal environment. The same is true for dizygotic 
twins, except that they are only genetically similar rather than genetically identical. 

This remarkable degree of shared background, as well as the specific difference in the shared 
background between the two types of twins, provides a nearly ideal setting to study the effect of 
genetics on disease. For example, to identify the degree to which a given condition is due to 
genetic factors, investigators can determine the correlation in the condition among pairs of each 
type of twin, and then compare the correlation between the two types. A large difference 
indicates that a large portion of the condition is due to genetics, whereas no difference indicates 
that the condition is due to other factors. Figure 2 summarizes a few results from twin studies of 
various conditions.  
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Figure 2: Example results from twin studies, drawn from a recent review (Boomsma, Busjahn & Peltonen 

2002).  Purple (darkest) bars indicate effects due to genetics, green (dark) bars to shared environment, 
and beige (light) bars to unique environment. 

Two factors are remarkable about the efficacy of twin studies. First, they allow the quantitative 
impact of genetics to be determined even though investigators may have no idea what specific 
genes are involved. That is, they can determine the degree to which some variable on a 
particularly entity (genotype) affects the observed condition without knowing what that variable 
is or how to measure it. Second, they can perform this analysis by studying only a tiny fraction of 
an entire population. Indeed, without access to a very large population, it would be virtually 
impossible to gain access to a sufficient number of pairs of monozygotic and dizygotic twins. 

It is also important to note that the validity of twin studies relies on at least three pieces of 
information known to investigators but not (typically) represented explicitly in data used for 
QED studies. First, twins occur relatively randomly in the population. If identical twins were 
much more likely to be born to parents with particular genetic traits or who lived in particular 
environments, then those factors would confound efforts to use twins to study the effects of 
genetics on physical conditions. Second, genetic makeup is established temporally prior to the 
onset of diseases and other conditions. Thus, we know the direction of causality without having 
to determine it from data. 

Finally, and perhaps most importantly, we know that genotype (genetic sequence) and phenotype 
(physical condition) can be treated as related but separate entities. This means that individuals 
can have identical genotypes but not identical phenotypes. Thus, the relational representation 
shown in Figure 3 can be used to represent the data, where monozygotic twins share a common 
genotype and dizygotic twins do not. This relational representation underlies the inference of 
investigators that, if the two types of twins do not differ significantly in the correlation of their 
conditions, then all possible variables on genotype can be removed as potential causal factors. 
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Figure 3: Graphical models representing monozygotic (a) and dizygotic (b) twins. Circles represent 

variables, boxes represent entities, and solid and dashed arrows represent known and potential 
dependencies, respectively.
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Methods, Assumptions, and Procedures 
The early goals of our study (which were the only ones accomplished due to early termination of 
the cooperative agreement) were to assess: 

(1) Applicability — Determine the degree to which QEDs could be used to address causal 
questions of interest; 

(2) Utility — Assess the qualitative and quantitative impact of using QEDs for causal discovery; 
and 

(3) Potential for automated identification — Determine whether it was possible to identify 
QEDs automatically. 

Our methods included the following: 

(1) Literature review — We reviewed key texts on quasi-experimental design (Campbell & 
Stanley 1963; Cook & Campbell 1979; Shadish, Cook & Campbell 2002), major journal 
articles, and websites devoted to methods for quasi-experimental design.  This work required 
substantial translation between concepts common to machine learning and those common in 
social science and experimental design.  For example, much of the research in QEDs 
solidified before the revolution in ML that led to the widespread adoption of graphical 
models, and this necessitated a translation of QED concepts into the terms of graphical 
models. 

(2) Construction of test problems — We gathered data and created the necessary background 
knowledge for four test domains that supported both manual and automated analysis.  Three 
of the domains were drawn from real domains for which data were available (Wikipedia, the 
National Football League, and the US motion picture industry) and one was drawn from a 
realistic domain for which we lack data (military flight training).  Our criteria for selecting 
domains included: (a) the existence of a rich relational structure that supports the 
identification of QEDs; (b) the similarity to military scenarios involving both collaboration 
and adversarial behavior; (c) the likelihood of intrinsic interest among other machine learning 
researchers; (d) the existence of causal intuitions on the part of the PI and graduate students; 
and (e) the availability of real data. 

(3) Manual identification of QEDs — We manually identified QEDs in each of the test domains 
in order to gain experience with the necessary knowledge representation and reasoning 
capabilities.   

(4) System construction — We encoded some key concepts of quasi-experimental design into 
first-order logic and constructed a prototype for identifying simple QEDs by automated 
reasoning using those logical rules.   

(5) Evaluation — We performed an initial evaluation on that prototype. 
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Results and Discussion 
The results of our work fall into two broad categories: (1) exploratory research on the potential to 
use quasi-experimental designs to learn causal models; and (2) more traditional research on 
developing representations and algorithms for learning highly expressive models of complex 
types of data.  Prior work in the second area has created the opportunity explored in the first area, 
and continued work in the second area (expressing and learning highly expressive statistical 
models) is necessary for full exploitation of the first area. 

Quasi-experimental design 
The results of our work on quasi-experimental designs are preliminary, largely due to the early 
termination of the cooperative agreement.  However, based on our preliminary work, the 
prospects for using quasi-experimental designs to significantly enhance causal discovery is 
excellent.   

Data 

As already mentioned, we assembled and analyzed several data sets to provide experience and 
case studies concerning the applicability and variety of quasi-experimental designs.  In 
particular, we assembled data from the National Football League, the Internet Movie Database, 
and Wikipedia. 

National Football League — The National Football League (NFL) is the governing body for 
American football franchises. The league consists of 32 teams that are divided into two 
conferences of equal size — the American Football Conference (AFC) and National Football 
Conference (NFC).  Each conference has four equal-sized divisions of four teams each.  Each 
team participates in 16 regular season games per year.  Six of those games are with the other 
three divisional rivals (once at home and once away).  We gathered data over a five-season span 
(2002-2007), drawing in particular from one online source,1 though many sources provide 
similar data.  

American football, and sports in general, are a rich tradition of causal questions.  For example, 
does playing at particular stadiums cause relative score differentials for the home team?  Does 
fatigue induced by multiple away games produce lower scores?  We used QEDs enabled by the 
structure of the NFL data to examine several of these questions.  Such designs are enabled by the 
structure of the NFL data.  For example, the regular structure of divisional games (playing the 
same team once at home and once away) provides a nearly perfect example of a blocking design 
in which each of a set of entities (each of a set of team pairings, in this case) is subjected to two 
different treatments.  Blocking designs help control for both measured and unmeasured variables 
on those entities, because blocking designs examine the differential effect of treatments when all 
those variables are held constant. 

Internet Movie Database — The Internet Movie Database2 contains information on movies 
released worldwide, including release dates, directors, producers and actors, as well as the 
nominees and recipients of Academy Awards. We selected a subset of these awards covering 
films released in the years 1997 to 2007. We included information on the nominees and winners 
                                                 
1 www.pro-football-reference.com 
2 www.imdb.com 

http://www.pro-football-reference.com
http://www.imdb.com
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of Best Picture, Best Director, Best Actor, and Best Actress. We augmented the IMDb data with 
the Netflix Prize data set,3 which contains the title and year of release for 17,770 movies released 
on DVD and ratings of those movies from more than 400,000 customers. The date range for 
ratings is from November 11, 1999 to December 31, 2005. The schema shown in figure Figure 4: 
Entity-Relationship diagram with temporal frequencies and extents for the IMDb+Netflix 
database. Each movie has a series of actor and director stints as well as a review by a user of the 
Netflix Prize database. Awards are presented to actors, directors, and movies. represents the 
combination of the two data sets. 

 

Figure 4: Entity-Relationship diagram with temporal frequencies and extents for the IMDb+Netflix 
database. Each movie has a series of actor and director stints as well as a review by a user of the Netflix 

Prize database. Awards are presented to actors, directors, and movies. 

The data could be used to examine a large number of interesting causal questions, and the 
structure of the data provides a large number of potential designs.  For example, one instance of 
a QED identified by automatically by our prototype AIQ system involves the variables of award 
existence and an aggregate of user ratings on a base item of movies. This design implies, rather 
intuitively, that granting an Academy Award to a movie may cause changes in user ratings of 
that movie. This design was made possible because whether an award entity exists was 
designated as pseudo-random among all nominated movies (i.e., all nominated movies are 
equally likely to win an award).  This is clearly an assumption, but a plausible one. 

We tested this design by computing the average rating a movie receives in the two months prior 
to and the two months after Academy Awards are granted. For each movie, we computed the 
difference in the average ratings. Then we compared the mean difference for movies that won an 

                                                 
3 www.netflixprize.com 

http://www.netflixprize.com
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award with the mean difference for those who were nominated but did not win.  The difference 
was found to be weakly significant, implying a causal connection between whether a movie wins 
an Academy Award and how Netflix viewers rate that movie.   

Importantly, this design avoids the obvious problems with a more simplistic analysis that would 
merely compare the Netflix ratings of all movies that won awards with the ratings of all movies 
that did not.  The results of such an analysis (winners are more highly rated) could be due to the 
fact that a third variable (movie quality) is a common cause of both winning awards and 
receiving high ratings.  Additional details can be found in our KDD 2008 paper (Jensen et al. 
2008). 

Wikipedia — Wikipedia is a peer-produced general knowledge encyclopedia.4 Wikipedia 
articles, or pages, are produced collectively by thousands of volunteer users.   Because the 
articles are created, modified, stored, and read entirely in an online environment, and because the 
users and editors of Wikipedia are geographically dispersed, nearly all interactions with the 
system and between users are entirely captured by Wikipedia's logs. 

 

Figure 5: A schema for the Wikipedia data set, showing how entities of users,  
pages, projects, and page categories are related. 

Figure Figure 5: A schema for the Wikipedia data set, showing how entities of users,  
pages, projects, and page categories are related. provides a simplified relational data schema that 
describes the major entities and relations that make up Wikipedia.  Pages are created and 
modified by users, and users often organize themselves into groups called projects, each of 
which covers a general topic. Within a project, editors assess individual pages for “importance” 
(how central the page is to the project theme) and “quality” (a project-independent objective 
evaluation of key criteria). 

The data provide the ability to examine many causal claims about Wikipedia.  For example, one 
of the most persistent claims about Wikipedia is that its reputability stems from the large number 
of users that collaborate to write each article. We call this the “many-eyes hypothesis”—the 
more users that revise an article, the higher the quality of that article. If we knew that this claim 

                                                 
4 www.wikipedia.org 

http://www.wikipedia.org
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were actually causal, then we could theoretically increase the quality of an article by asking more 
users to participate in revisions.  

However, to actually determine that there exists a causal dependence between the number of 
users editing an article and its quality, we must eliminate other plausible alternative models that 
could explain the observed correlation. Fortunately, the data available on Wikipedia make it 
possible to evaluate this claim. In fact, the data allow the use of a number of different designs, 
each eliminating different potential threats to a valid causal conclusion.  Other interesting causal 
questions include whether page adoption by a project increases page quality, what effects 
vandalism has on the frequency with which a page is monitored and edited, and whether joining 
a project increases a user's participation in editing.  Additional details can be found in a recent 
technical report (Maier, Rattigan, and Jensen 2009). 

Findings 

Our analysis of specific case studies in the data above established the following findings: 

• QEDs are widely applicable — For the domains examined in the study, many causal 
questions could be examined with one or more quasi-experimental designs.  Such QEDs were 
not always immediately apparent, but this parallels findings of several studies of the use of 
quasi-experimental designs in the social sciences, which indicate that relatively simple 
designs are often used when alternative designs with higher statistical power are available. 

• QEDs are useful in key domains— In several cases, using quasi-experimental designs 
allowed the elimination of one or more potential causal models, thus restricting the space of 
models that can account for the observed correlations.  Quantifying the extent to which 
designs increase the accuracy and statistical power of causal inference was not possible at 
this early stage, but the utility appears relatively large. 

• QEDs can be automatically identified — At least two simple designs (designs that use quasi-
control and designs that employ blocking) can be identified automatically using a relatively 
simple automated reasoning engine. This automated identification requires reasoning systems 
that represent and reason about ontological information and known constraints on the causal 
model.  If such information is represented, then a reasoning system using first-order logic can 
identify at least some quasi-experimental designs (Jensen et al. 2008). 

We developed the following capabilities: 

• An automated reasoning system for identifying one type of QED — We developed the AIQ 
system (Automated Identification of Quasi-experiments) that can automatically identify and 
reason about designs that rely on quasi-random variables (Jensen et al. 2008).  The system 
takes as input a data schema and an existing set of causal knowledge and produces as output 
one or more QEDs, where each QED includes a treatment variable (the potential cause), an 
outcome variable (the potential effect), and a specification of a unity (the portion of the data 
schema used to create the rows of a data table to be used for hypothesis testing). Quasi-
random variables are essentially the simplest of all QEDs, but the necessary infrastructure to 
identify designs was non-trivial.  AIQ is written in Prolog and is available as open-source 
software. 

• Evaluation data sets and case studies — We developed several data sets and case studies to 
both evaluate and demonstrate AIQ.  As mentioned above, three of the domains were drawn 
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from real domains for which data were available (Wikipedia, the National Football League, 
and the US motion picture industry) and one was drawn from a realistic domain for which we 
lack data (military flight training). 

 

Relational learning 
Our work in relational learning follows on from a well-established line of research over the past 
decade.  Our work under this contract resulted in the following capabilities: 

• An error analysis framework for relational models — We developed a bias-variance 
framework for relational models that decomposes loss into errors due to both the relational 
learning and the collective inference processes (Neville & Jensen 2008). We evaluated the 
performance of three relational models on synthetic and real-world datasets with the 
framework and showed that: (1) inference can be a significant source of error; and (2) the 
models exhibit different types of errors as data characteristics are varied. 

• A framework for learning temporal-relational models — We developed a novel framework 
for learning predictive models of dynamic relational data (where the relationships among 
entities change over time) (Sharan & Neville 2008). We use a two-phase process that first 
summarizes the temporal changes in link structure by constructing a static, weighted 
relational graph using kernel smoothing and then we learn modified statistical models from 
the summarized data. This approach facilitates the development of efficient learning and 
inference techniques by considering a restricted set of temporal-relational dependencies and 
using parameter-tying methods to generalize across relationships and entities.    

• A method for resampling from relational data — We developed a relational resampling 
technique to accurately estimate the variance of sampling distributions of statistics for 
heterogeneous, dependent data (Eldardiry & Neville 2008). The approach aims to preserve 
local relational dependencies (e.g., relational autocorrelation) and link structure, while 
introducing sufficient variance at a global level to correctly model the process of drawing 
samples from the underlying population. The key idea behind the approach is to sample 
subgraphs with replacement from the original data, thereby preserving the local link and 
attribute structure within the subgraphs. This is augmented with a procedure that links up the 
selected subgraphs in an attempt to match the global properties of the data without 
reproducing them exactly. 

• A new learning method for within-network classification — We developed a categorization 
framework for “within-network” relational learning and inference, where models are learned 
on a partially labeled relational dataset and then are applied to predict the classes of 
unlabeled instance in the same graph (Xiang & Neville 2008). Current methods can be 
categorized as:  disjoint learning with disjoint inference, disjoint learning with collective 
inference, and collective learning with collective inference. Here “disjoint” refers to 
techniques that ignore the unlabeled data and “collective” refers to techniques that jointly 
consider the labeled and unlabeled data. Models from each of these categories have been 
employed previously in different settings, but to our knowledge there has been no systematic 
investigation comparing models from the three categories simultaneously. To undertake this 
investigation, we developed a novel pseudolikelihood EM method that facilitates collective 
learning and collective inference on partially labeled relational networks. We then compare 
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this method to competing methods drawn from the same family of models to investigate the 
performance tradeoffs between disjoint and collective modeling approaches. 

• A shrinkage approach to model non-stationary relational dependencies — Current statistical 
relational learning techniques model global autocorrelation dependencies under the 
assumption that the level of autocorrelation is stationary throughout the graph (Angin & 
Neville 2008). To date, there has been no work examining the appropriateness of this 
stationarity assumption. We examined two real-world datasets and found that there is 
significant variance in the autocorrelation dependencies throughout relational data graphs. To 
account for this, we developed three shrinkage techniques for modeling non-stationary 
autocorrelation, which combine local and global estimates of the relational dependencies in 
the data. In regions of the graph where there is sufficient information locally for accurate 
parameter estimation, the model relies on the local estimates more heavily; otherwise it backs 
off to the global estimates. This results in a modeling approach that is more robust to 
variance in relational dependencies throughout a relational data graph. 

• A link-strength prediction method that uses transactional information among entities — In 
electronically collected social networks data sets, the observed relationships often contain 
noisy information (i.e., weak relationships) (Kahanda & Neville 2009). Since the accuracy of 
relational modeling techniques is often contingent on the presence of links in the data that 
confer homophily, methods that can prune away these spurious relationships and highlight 
stronger relationships will likely result in improved model performance. Online social 
network domains contain ancillary transactional data among entities (e.g., communication, 
file transfers) that can be used to infer the true underlying social network. We exploit this 
transactional information and developed models to predict “link strength” based on 
topological, and transactional features. We evaluated our approach on real-world data and 
showed that we can accurately predict strong relationships. Moreover, we show that 
transactional-network features are the most influential features for this task.
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Conclusions 
In addition to the above results, we conclude: 

(1) More designs exist than can be easily handled manually — Many designs exist for any one 
causal inference task.  For a large number of tasks we considered manually, the number of 
possible designs quickly exceeded our capacity to easily consider them without automated 
assistance.  This has positive implications for the prospect of automated systems to help 
human analysts simultaneously reason about the space of causal models and designs. 

(2) Blocking is a highly useful design element — While we began the study expecting to 
implement entire QEDs, we quickly came to realize that many designs that are implemented 
by human experts combine multiple design elements (e.g., temporal blocking, modeling, and 
multiple pre-tests and post-tests).  Among these options, blocking is among the most widely 
useful elements of QEDs.  Blocking groups data elements into “blocks” within which many 
variables are controlled.  For example, blocks could be pairs of twins (who share a common 
genome), groups of employees in a given company (who share a common work 
environment), or even a single person at two different times (where variables about that 
person are assumed to remain constant over the entire time period). 

(3) QEDs can increase power — QEDs can substantially increase the statistical power of a 
system, allowing it to make causal inference with far fewer data points than would otherwise 
be possible.  Among the ways in which they do this is to reduce the need to model (or even 
measure) some set of variables.  Fewer variables means lower sample complexity (increased 
power). 

(4) QEDs can interact to allow chains of causal inference — Interactions occur between 
conclusions of individual designs, and these interactions could produce a beneficial “chain 
reaction” when they are applied sequentially.  This has strong implication for the design of 
systems that exploit QEDs, because it implies that some designs are more useful to apply first 
because the conclusions they support can enable other designs. 

(5) Relational models require specialized evaluation methods — Relational models require 
fundamentally different types of analysis than propositional models, as we detail in a recent 
paper (Neville & Jensen 2008). 

(6) Representational expressiveness is still a limiting factor in model accuracy — Our work on 
temporal-relational models and modeling non-stationary autocorrelation shows that 
significant improvements in accuracy can be obtained by increasing the expressiveness of the 
space of models considered by the learning algorithm.  That is, for many data sets of realistic 
size, the expressiveness of the model space is still a limiting factor on the accuracy of the 
models that can be learned.  This has significant implications for the prospects for learning 
causal models. Learning models of non-trivial domains, and applying the full range of quasi-
experimental designs, will require models that go beyond simple relational representations to 
include non-stationary distributions and temporal dependencies. 
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List of Acronyms 
 

 

ML – Machine Learning 

PAINT – Proactive Intelligence 

QEDs – Quasi-experimental Designs 

SRL – Statistical Relational Learning  
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